June 2006
9801 Advanced Extension Award
Mark Scheme

Qn. 3.

$$
\begin{aligned}
& \log _{y} x=z \quad \therefore=y^{z} \\
& \therefore y=x^{1 / z} \Rightarrow \log _{x} y=\frac{1}{z}=\frac{1}{\log y} \\
& \log x=\log y=z \log _{x y} y=1
\end{aligned}
$$

$$
\begin{align*}
\therefore y=x^{1 / z} \Rightarrow & \log _{x} y=\frac{1}{z}=\frac{1}{\log _{y} x} \\
\text { or } \log _{x} x=\log _{x} y^{z}= & z \log _{x} y=1 \\
& \therefore \log _{x} y=\frac{1}{\log _{y} x} \quad(A \operatorname{siv}) \tag{2}
\end{align*}
$$

Cout ACopo:

Al cso
(b)

$$
\begin{array}{r}
\log _{x} y=\log _{y} x=\frac{1}{\log _{x y}} \quad \Rightarrow \quad\left(\log _{x} y\right)^{2}=1 \\
\therefore \log _{x y} y= \pm 1 \\
\log _{x} y \neq 1 \quad \because x \neq y \quad \therefore \quad \log _{x} y=-1 \\
\end{array}
$$

(c) Fisterutini $\Rightarrow y=1 / x$
$\sec h$ equation $\Rightarrow \log _{x}\left(x-\frac{1}{x}\right)=\log _{\frac{1}{x}}\left(x+\frac{1}{x}\right)=z$

$$
\begin{gathered}
\therefore x^{z}=x-\frac{1}{x} \quad ;\left(\frac{1}{x}\right)^{z}=x+\frac{1}{x} \\
\therefore x^{z}\left(\frac{1}{x}\right)^{z}=1=\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right) \quad \text { (eliminif } M 1 \\
\Rightarrow x^{2}=\left(x^{2}-1\right)\left(x^{2}+1\right) \\
\Rightarrow x^{4}-x^{2}-1=0 \\
x^{2}=(1 \pm \sqrt{5}) / 2
\end{gathered}
$$

$x^{2}>0$, beve $x^{2}=\frac{1+\sqrt{5}}{2}$
$\left(\begin{array}{c}\text { qued fone } \\ \left.+x^{2}>0\right)\end{array}\right.$

$$
\begin{aligned}
& x=\frac{\sqrt{\frac{1+\sqrt{5}}{2}}}{\frac{1}{x}=\sqrt{\frac{2}{1+\sqrt{5}}}}\left(\text { or } \sqrt{\frac{\sqrt{5}-1}{2}}\right) \int_{A 1} 1 \text { (velueq+veroof) A1 }
\end{aligned}
$$

Q.4 $(x+4)^{2}+(y-7)^{2}=13$ and $y=m x$
(a)

$$
\begin{aligned}
\therefore & \left(x^{2}+8 x+16\right)+\left(m^{2} x^{2}-14 m x+49\right)=13 \\
& \left(1+m^{2}\right) x^{2}+(8-14 m) x+52=0
\end{aligned} \quad(3 t-9+x) A 1
$$

Touble, so " $b^{2}=4 a c$ "

$$
\begin{aligned}
& \quad(8-14 m)^{2}=4 \times 52 \times\left(1+m^{2}\right) \\
& (4-7 m)^{2}=52+52 m^{2} \\
& \therefore \quad 3 m^{2}+56 m+36=0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& (3 m+2)(m+18)=0 \\
& \therefore m=-2 / 3 \text { or }-18
\end{aligned}
$$

Let A or B be (x, y)

$$
\text { then }\left(x^{2}+y^{2}\right)+13=4^{2}+7^{2}=65
$$

$$
x^{2}+y^{2}=52
$$

$$
y=-2 / 3 x \Rightarrow \frac{13}{9} x^{2}=52 \Rightarrow x= \pm 6
$$

$\} M(, A)$
From the configuration $\quad X_{B}=-6: Y_{B}=+4: B \sin (-6,4)$.

$$
\begin{array}{r}
y=-18 x \Rightarrow \quad 325 x^{2}=52 \Rightarrow x^{2}=\frac{4}{25} \\
\text { Agai } x<0 \text { for } A \quad \therefore \quad x_{A}=-\frac{2}{75} ; \quad y_{A}=\frac{36}{5} \tag{8}\\
A=\left(-\frac{2}{5}, \frac{36}{5}\right)
\end{array}
$$

(c) Sinthoin is a maseation of problem in (b) by $\binom{4}{-7}$

So P, Q are $\binom{-6}{4}+\binom{4}{-7}$ and $\left(-\frac{2}{5}, \frac{36}{5}\right)+(4,-7)$

$$
=(-2,-3) \text { ard }\left(\frac{18}{5}, \frac{1}{5}\right)
$$

A1 (eitlar) (2)

Qus If L_{1}, L_{2} whersect, then $r_{1}=\underline{r}_{2}$
(a) $\quad \therefore \Rightarrow-2+3 \lambda=11.5+7 \mu \Rightarrow-13.5+3 \lambda=7 \mu$ (1)

$$
\begin{array}{ll}
\dot{j} \Rightarrow-11.5-4+\lambda=3+8 \mu \quad & \Rightarrow-14.5-4 \lambda=8 \mu \\
- & 8.5+\lambda=11 \mu \text { (3) }
\end{array}
$$

$$
\underline{k} \Rightarrow-\lambda=8-5-11 \mu \quad \Rightarrow \quad 8 \cdot s+\lambda=11 \mu(3)
$$

Solve any pair If these
(1) $e(2) \Rightarrow \lambda=1 / 8, \mu=-15 / 8$
(1) r (3) $\Rightarrow \lambda=8, \mu=3 / 2$
(2) r (3) $\Rightarrow d=-\frac{35}{8}, \mu=3 / 8$

Chect i thire equation \Rightarrow in consuotery
Hece $L_{1}, L_{2} d s$ not miersect

(check) MI
(comment) Bl (5)
(b) $\left(\begin{array}{c}3 \\ -4 \\ -1\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)=6-4-2=0 \therefore\binom{2}{1} \perp^{r} L_{1}$ (Acometr) $\mathrm{M} /$

$$
\left(\begin{array}{c}
7 \tag{2}\\
8 \\
-11
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
1 \\
2
\end{array}\right)=14+8-22=0 \quad \therefore\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) \perp^{r} L_{2} \quad(\text { bork }) \text { A1 }
$$

(c)
[Note "2 $\left.\underline{\underline{j}}^{\prime} "=\underline{k} " \Rightarrow 27 \mu+7 \lambda+20.5=0\right]$
Solve (4) $2(5)$
(or ang $2\left(V^{i s}\right)$$\Rightarrow \underline{\lambda=-1 ; \mu=-1 / 2} \quad$ (soling) $\mu($

$$
\therefore \quad \overrightarrow{O A}=\left(\begin{array}{c}
-5 \\
-7.5 \\
1
\end{array}\right) \quad \overrightarrow{a B}=\left(\begin{array}{c}
8 \\
-1 \\
14
\end{array}\right)
$$

$$
\begin{aligned}
& \overrightarrow{A B}=\left(\begin{array}{l}
7 \mu+11.5-(-2+3 \lambda) \\
8 \mu+3-(-11-5-4 \lambda) \\
-11 \mu+8 \cdot 5-(-\lambda)
\end{array}\right)=\left(\begin{array}{c}
7 \mu-3 \lambda+13 \cdot 5 \\
8 \mu+4 \lambda+14.5 \\
-11 \mu+\lambda+8 \cdot 5
\end{array}\right) \\
& \overrightarrow{A B} \|\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) \\
& \therefore " \underline{\prime \prime}=" \underline{k} " \Rightarrow 7 \mu-3 \lambda+\frac{27}{2}=-11 \mu+\lambda+\frac{17}{2} \\
& \Rightarrow 18 \mu-4 \lambda+5=0 \\
& "{ }^{2 j}{ }^{\prime} " "^{\prime \prime} " \Rightarrow 16 \mu+8 \lambda+29=7 \mu-3 \lambda+13.5
\end{aligned}
$$

Qn 6 (a) $x=1 ; y=\sin (\ln 1)=\sin 0=0$

$$
\therefore \quad P=(1,0) \text { and } P \text { lis on } C
$$

(b) $y^{\prime}=\frac{1}{x} \cos (\ln x)$
$y^{\prime}=0$ at Q

$$
\begin{aligned}
& \therefore \cos (\ln x)=0 \therefore \ln x=\pi / 2 \\
& x=e^{\pi / 2} \\
& \therefore \theta=\left(e^{\pi / 2}, s=\left(\ln e^{\pi} 1\right)\right) \\
&=\left(e^{\pi / 2}, 1\right)
\end{aligned}
$$

(c)

$$
\text { Area }=\int_{1}^{e^{\pi / 2}} \operatorname{Sin}(\ln x) d x-\operatorname{Aren} \Delta P_{Q R}
$$

$$
\text { Aren } \Delta P Q R=\frac{1}{2} \times 1 \times\left(e^{\pi / 2}-1\right)
$$

For integral; let $\ln x=u \quad \therefore \quad x=e^{4}$
(subte) MI

$$
\begin{aligned}
& \frac{1}{x} d x=d u \quad \therefore \quad d x=e^{4} d u \\
& E=\int_{0}^{\pi / 2} \sin u \cdot\left(e^{u} d u\right) \\
& =\left[e^{u} \sin u\right]_{0}^{\pi / 2}-\int e^{u} \cos u d u \\
& \therefore \quad d x=e^{4} d u \\
& \begin{array}{l}
=e^{\pi / 2}-[e \\
2 I=e^{\pi / 2}+1
\end{array} \\
& I=\frac{1}{2}\left(1+e^{\pi / 2}\right) \\
& \therefore \text { Arex }=\frac{1}{2}\left(1+e^{\pi / 2}\right)-\frac{1}{2}\left(-1+e^{\pi / 2}\right)=1
\end{aligned}
$$

Qu 7.
(a)
ges
Apprrinte figure

$$
\begin{aligned}
& \therefore\left(r_{i}+r_{i+1}\right) \sin \alpha=r_{i}-r_{i+1} \\
& \therefore r_{i+1}(1+\sin \alpha)=r_{i}(1-\sin \alpha) \\
& \therefore \text { ratis } \eta \sin \alpha=\frac{1-\sin \alpha}{1+\sin \alpha} \text { (t)} \\
& (=r)
\end{aligned}
$$

$\left(\frac{r_{i+1}}{r_{i}}\right) M 1$

$$
\begin{aligned}
& \text { Tonal area }=\pi R^{2}+\pi r_{2}^{2}+\pi r_{3}^{2}+\cdots \\
&=\pi R^{2}\left(1+r^{2}+r^{4}+\cdots\right) \quad\left(c^{2}\right) \\
&=\frac{\pi R^{2}}{1-r^{2}}=\pi R^{2} \frac{1}{1-\left(\frac{1-\sin \alpha}{1+\sin \alpha}\right)^{2}} \\
&=\frac{\pi R^{2}(1+\sin \alpha)^{2}}{\left(1+\sin \alpha 1^{2}-(1-\sin \alpha)^{2}\right.} \quad=\frac{\pi R^{2}(1+\sin \alpha)^{2}}{4 \sin \alpha}
\end{aligned} \quad \mathrm{Al}
$$

(c)

$$
\text { Aeqpired area }=2 \times \text { Area } \triangle P O A+\text { Aren magir sector } A O B
$$

- Aren found in (b).

Aren $\triangle P$ OK $=\frac{1}{2} R \cdot(R \cot \alpha)$
$\angle P O A=\pi / 2-\alpha \quad \therefore$ ayel 1 major frator to $B=\pi+2 \alpha$
\therefore Aren sects $A \circ B=\frac{1}{2} R^{2}(\pi+2 \alpha)$

$$
\begin{aligned}
\therefore \text { Repured area } & =R^{2}\left(\cot \alpha+\frac{\pi}{2}+\alpha-\frac{\pi}{4}\left(\frac{1+2 \sin \alpha+\sin ^{2} \alpha}{\sin \alpha}\right)\right. \\
& =R^{2}\left(\alpha+\cot \alpha-\frac{\pi}{4} \operatorname{cosec} \alpha-\frac{\pi}{4} \sin \alpha\right)
\end{aligned}
$$

(x) Aleso
Q. 7
(cout.)

$$
\begin{aligned}
\frac{d S}{d \alpha} & \left.=R^{2}\left(1-\operatorname{cosec}^{2} \alpha+\frac{\pi}{4} \operatorname{cosec} \alpha \cot \alpha-\frac{\pi}{4} \cos \alpha\right) \right\rvert\, \\
& =R^{2}\left(-\cot ^{2} \alpha+\frac{\pi}{4} \frac{\cos \alpha}{5 s^{2} \alpha}-\frac{\pi}{4} \cos \alpha\right) \\
& =R^{2}\left(-\cot ^{2} \alpha+\frac{\pi}{4} \cos \alpha\left(\operatorname{cosec}^{2} \alpha-1\right)\right) \\
& =R^{2} \cot ^{2} \alpha\left(\frac{\pi}{4} \cos \alpha-1\right)
\end{aligned} \quad(\cos ^{2} \alpha=\overbrace{2} \operatorname{cosec}^{2} \alpha-1) \quad M 1
$$

(e) In the givien rage $R^{2} \cot ^{2} \alpha>0$

In the inianal $(0, \pi / 4)$; $\frac{\pi}{4} \cos \alpha-1$ is a detrencrij
fumtion $(\because \cos \alpha$ is deverici, $)$.
At $\alpha=0, \pi / 4 \cos \alpha-1=\pi / 4-1<0$

$$
\therefore \quad \pi / 4 \cos \alpha-1<0 \operatorname{cis}(\pi / 6, \pi / 4)
$$

$\therefore \frac{d s}{d \alpha}<0$ thaghat the cuteral.
\therefore Leret vabe of S oocurs at $\alpha=\pi / 4$

$$
\begin{aligned}
M=S & =R^{2}\left(\frac{\pi}{4}+1-\frac{\pi}{4} \cdot \sqrt{2}-\frac{\pi}{4} \cdot \frac{1}{\sqrt{2}}\right) \\
& =R^{2}\left(1-\frac{\pi}{4}\left(-1+\sqrt{2}+\frac{1}{\sqrt{2}}\right)\right) \quad \text { o.e. }
\end{aligned}
$$

